Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Polymers (Basel) ; 13(19)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1444298

ABSTRACT

(1) Background: A quest for a highly sensitive and reliable humidity monitoring system for a diverse variety of applications is quite vital. Specifically, the ever-increasing demand of humidity sensors in applications ranging from agriculture to healthcare equipment (to cater the current demand of COVID-19 ventilation systems), calls for a selection of suitable humidity sensing material. (2) Methods: In the present study, the TPPNi macromolecule has been synthesized by using a microwave-assisted synthesis process. The layer structure of the fabricated humidity sensor (Al/TPPNi/Al) consists of pair of planar 120 nm thin aluminum (Al) electrodes (deposited by thermal evaporation) and ~160 nm facile spin-coated solution-processable organic TPPNi as an active layer between the ~40 µm electrode gap. (3) Results: Electrical properties (capacitance and impedance) of sensors were found to be substantially sensitive not only on relative humidity but also on the frequency of the input bias signal. The proposed sensor exhibits multimode (capacitive and conductometric) operation with significantly higher sensitivity ~146.17 pF/%RH at 500 Hz and 48.23 kΩ/%RH at 1 kHz. (4) Conclusions: The developed Al/TPPNi/Al surface type humidity sensor's much-improved detecting properties along with reasonable dynamic range and response time suggest that it could be effective for continuous humidity monitoring in multi environmental applications.

2.
Adv Mater ; 33(16): e2100218, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1121010

ABSTRACT

From typical electrical appliances to thriving intelligent robots, the exchange of information between humans and machines has mainly relied on the contact sensor medium. However, this kind of contact interaction can cause severe problems, such as inevitable mechanical wear and cross-infection of bacteria or viruses between the users, especially during the COVID-19 pandemic. Therefore, revolutionary noncontact human-machine interaction (HMI) is highly desired in remote online detection and noncontact control systems. In this study, a flexible high-sensitivity humidity sensor and array are presented, fabricated by anchoring multilayer graphene (MG) into electrospun polyamide (PA) 66. The sensor works in noncontact mode for asthma detection, via monitoring the respiration rate in real time, and remote alarm systems and provides touchless interfaces in medicine delivery for bedridden patients. The physical structure of the large specific surface area and the chemical structure of the abundant water-absorbing functional groups of the PA66 nanofiber networks contribute to the high performance synergistically. This work can lead to a new era of noncontact HMI without the risk of contagiousness and provide a general and effective strategy for the development of smart electronics that require noncontact interaction.


Subject(s)
Biosensing Techniques/methods , Electronics , Asthma/diagnosis , Biocompatible Materials/chemistry , Biosensing Techniques/instrumentation , Electrodes , Graphite/chemistry , Humans , Humidity , Internet of Things , Mobile Applications , Nanofibers/chemistry , Respiratory Rate , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL